MORE M-BRANES ON PRODUCT OF RICCI-FLAT MANIFOLDS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformally Flat Manifolds with Nonnegative Ricci Curvature

We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...

متن کامل

Generalized pp-wave solutions on product of Ricci-flat spaces

A multidimensional gravitational model with several scalar fields and fields of forms is considered. A wide class of generalized pp-wave solutions defined on a product of n + 1 Ricci-flat spaces is obtained. Certain examples of solutions (e.g. in supergravitational theories) are singled out. For special cone-type internal factor spaces the solutions are written in Brinkmann form. An example of ...

متن کامل

Ricci-flat Deformations of Asymptotically Cylindrical Calabi–yau Manifolds

We study a class of asymptotically cylindrical Ricci-flat Kähler metrics arising on quasiprojective manifolds. Using the Calabi–Yau geometry and analysis and the Kodaira–Kuranishi–Spencer theory and building up on results of N.Koiso, we show that under rather general hypotheses any local asymptotically cylindrical Ricci-flat deformations of such metrics are again Kähler, possibly with respect t...

متن کامل

The Structure of Compact Ricci-flat Riemannian Manifolds

where k is the first Betti number b^M), T is a flat riemannian λ -torus, M~ is a compact connected Ricci-flat (n — λ;)-manifold, and Ψ is a finite group of fixed point free isometries of T x M' of a certain sort (Theorem 4.1). This extends Calabi's result on the structure of compact euclidean space forms ([7] see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to essentiall...

متن کامل

On Ricci flat supermanifolds

We study the Ricci flatness condition on generic supermanifolds. It has been found recently that when the fermionic complex dimension of the supermanifold is one the vanishing of the super-Ricci curvature implies the bosonic submanifold has vanishing scalar curvature. We prove that this phenomena is only restricted to fermionic complex dimension one. Further we conjecture that for complex fermi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Geometric Methods in Modern Physics

سال: 2012

ISSN: 0219-8878,1793-6977

DOI: 10.1142/s0219887812500673